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Abstract: - In this paper, an observer design is proposed for linear time delay systems. An easy way to compute 
least square estimation error of an observer for time delay systems is derived, where the time delay terms exist 
in the state and output of the system. Based on the least square estimation error an optimization algorithm 
to compute a Kalman filter for time delay systems is proposed.  By employing the finite characterization 
of a Lyapunov functional equation, the existence of sufficient conditions for obtaining the right solution and 
guaranteeing the proper convergence rate of the estimation error has been evaluated. It will be shown that this 
finite characterization can be calculated by means of a matrix exponential function. The desirable performance 
of the proposed observer has been demonstrated through the simulation of several numerical examples. 
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1 Introduction 
As a dual of the control problem, the state 
estimation or filtering problem is of great 
importance in both theory and application, and in 
the last decades , this problem has gotten extensive 
concern and many solution schemes have been 
proposed and successfully put into action. Among 
them, Kalman filtering, which minimizes the 
variance of the estimation error, is the most famous 
one [11]. 
    Kalman filtering is one of the most popular 
estimation approaches. This filtering method 
assures that both the state equation and output 
measurement are subjected to stationary 
Gaussian noises. The applications of the 
Kalman filtering theory may be found in a large 
spectrum of different fields ranging from 
various engineering problems to biology, 
geoscience, economics, and management, etc. 
     A dynamic system whose state variables are 
estimations of the state variables of another system 
is called the observer of that system. This 
expression was first introduced in 1963 into the 
theory of linear systems by Luenberger [1]. He 
showed that for every observable linear system, an 
observer can be designed whose estimation error 
(i.e. the difference between the real state of the 
system and the observer state) becomes zero at 
every considered speed. In fact, an observer is a 
dynamic system whose inputs are the process inputs 
and outputs, and whose outputs are the estimated 

state variables. It can be stated that an estimator of 
state is an indispensible member of the control 
systems theory, and it has important applications in 
feedback control, system supervision and in the fault 
diagnosis of dynamic systems. 

In the control process, it is often assumed that the 
internal state vectors exist and are available in the 
measurement of the output; while in practice, this is 
not the case, and it is necessary to devise an 
observer in order to provide an estimation of state 
vectors. If the estimation and reconstruction of all 
the state variables is needed, the full-order 
observers, and if the estimation and reconstruction 
of a number of state variables is needed, the 
reduced-order observers are used. Time-delayed 
systems play significant roles in theoretical as well 
as practical fields; and this influence can be 
observed in numerous research articles written on 
various problems that involve this class of systems 
[2-8].  During the last decade, the theory of observer 
design for time delay systems has been widely 
contemplated [28-34]. The estimation of state 
variables is an important dynamic model, which 
adds to our knowledge of different systems and 
helps us analyze and design various controllers. 
Different approaches have been used for the 
designing of observers, including: the coordinate 
change approach [9], the LMI method [10], 
reducing transformation technique [11], 
factorization approach [12], polynomial approach 
[13], modal observer [14], reduced-order observer 
[15] and the output injection based observer [16]. In 
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[17], through an algebraic approach, an observer 
with delay-independent stability for systems with 
one output delay has been presented. In [18], an 
observer has been proposed that uses the H ∞  norm 
as the performance index. The H ∞  filter has been 
considered in [19], [20] by applying the delay 
independent stability conditions, in which the matrix 
inequality has been used. We also frequently 
encounter the issue of state delay in control 
problems and physical systems. In recent years, the 
systems with delay in state have attracted the 
attention of many researchers, and numerous 
approaches have been proposed for the evaluation of 
stability in these systems (see [21] and [22] and the 
references cited in them). 
The goal of this article is to design an observer for 
time delay systems in which the time delay terms 
exist in the output and in the state variables, and 
also the inputs are mixed with noise and the system 
output accompanies measurement noises. An easy 
way to compute least square estimation error of an 
observer for time delay system is derived. This least 
square estimation error coincides with that of a 
Kalman filter when time delay is zero. Based on the 
least square estimation error, an optimization 
algorithm to compute an observer is proposed. 

 In the designing of this observer we have used 
the H2 norm as the performance index. However, 
despite the usefulness of the 2H  norm, few 
observers have used it as the performance index. In 
[23] and [24] a method has been proposed for the 
calculation of the 2H  norm of time delay systems 
by means of the delay Lyapunov equation. In [25], 
an observer has been offered for time delay systems 
by applying the delay-independent stability 
conditions. It should be mentioned that delay-
independent approaches are generally more 
conservative than delay-dependent ones. In this 
article, for the estimation of system states, a  
Kalman filter has been proposed whose design uses 
the delay-dependent stability conditions. Note that 
when there are no time delay terms, observer is a 
standard Kalman filter. The optimal observer will be 
designed by employing the finite characterization of 
a Lyapunov functional equation as a matrix 
exponential function and applying the unconstrained 
nonlinear optimization algorithm. Finally, the 
proposed observer in this article will be used to 
estimate the current states based on the time delay 
system, where the time delay terms exist in the state 
and in the output of the system. 

This article has been organized in the following 
manner. In section 2, for the definition of the 
observer, the necessary mathematics has been 

presented. In section 3, the calculation of the 
2H norm has been offered for the state delay 

system. In section 4, the method of filter design has 
been described. In section 5, in order to test the 
practical usefulness of the proposed technique, it has 
been applied for solving the estimation problem of 
several linear systems with time delay. And finally, 
the summary and conclusion of the obtained results 
have been presented in the last section.   

        
 
2 Problem Formulation And 
Assumptions 
Consider linear time-invariant systems described by 
 

0 1 1 2

0 1 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t A x t A x t h B t B u t
y t C x t C x t h C t

ω
ν

= + − + +
= + − +

          (1) 

 
Where nx R∈  is the state, pRω∈  is the process 

noise, qu R∈  is the input, ry R∈  is the 
measurement, and rRν ∈  is the measurement noise. 
The h  is constant known time delay in the states 
and the outputs. 

It is assumed that ν  and ω  are uncorrelated 
white Gaussian processes, which satisfy 

 
{ ( )} 0, { ( ) ( ) } ( )
{ ( )} 0, { ( ) ( ) } ( )

E t E t s I t s
E t E t s I t s

ω ω ω δ
ν ν ν δ

′= = −
′= = −

                   (2) 

 
The objective of this paper is to derive a Kalman 
filter for time delay system (l), where a filter has the 
following form: 
 

2ˆ ˆ( ) ( ) ( ) ( )x t Gx t Ky t B u t= + +                                (3) 

       Defining the estimation error ( )e t  as 
 

ˆ( ) ( ) ( )e t x t x t−  
 
From (1) and (3) , we have 
 

( )
0 0

1 1 1 2

( ) ( ) ( ) ( )
( ) ( ) ( )

e t A G KC x t Ge t
A KC x t h B t KC tω ν

= − − + +

− − + −
   (4) 

 
And the augmented system with (1) is given by 
 

0 1( ) ( ) ( ) ( )
:

( ) ( )
a

t A t A t h B t
G

e t C t

η η η ζ

η

= + − +

=

              (5) 
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 where 
 

[ ]

0 1
0 1

0 0 1 1

1

1 2

( ) ( )
( ) , ( )

( ) ( )

0 0
,

0

0
, 0

x t t
t t

e t t

A A
A A

A G KC G A KC

B
B C I

B KC

ω
η ζ

υ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥−⎣ ⎦

     

    

    The 2H  norm augmented system aG   is used as 
the performance index of estimation 
 

 2

2
0 1

1( , , ) lim ( ) ( )
T

a T
G J G k h E e t e t dt

T→∞

⎧ ⎫⎪ ⎪′= = ⎨ ⎬
⎪ ⎪⎩ ⎭
∫          (6) 

If there are no time delay terms (i.e., 1 0A =  and 

1 0C = ), then (1) becomes 
 

0 1 2

0 2

( ) ( ) ( ) ( )
( ) ( ) ( )

x t A x t B t B u t
y t C x t C t

ω
ν

= + +
= +

 

 
and the filter, minimizing the 2H  norm (6) for this 
non-delayed system, is the standard Kalman filter. 
Thus we can call the proposed filter minimizing (6) 
a Kalman filter for time delay systems. 
 
 

3 H2 Norm Computatuon 
The 2H  norm of aG  is expressed in terms of matrix 
function ( )P s  in the next theorem. 
 
Theorem 1: If   is stable, then 
 

2

2
( (0) )aG Tr B P B′=                                               (7) 

 
Where ( ), 0P s s h≤ ≤  is continuously 
differentiable and satisfies 
 

0 1

(0) (0)
( ) (0) ( ) , 0

(0) (0) 0

P P
P s A P A P h s s h

P P C C

′=

′ ′= + − ≤ ≤

′ ′+ + =

                   (8) 

Remark 1:   is related to the Lyapunov functional 
of state delay system (4). Let [ ]( ) , ,0V C hφ φ∈ −  
be defined by 
 

  (9) 

1
0

1 1
0 0

( ) (0) (0) (0) 2 (0) ( ) ( )

( ) ( ) ( )

h

h h

V P P r A h r dr

h r A P r s A h r dsdr

φ φ φ φ φ

φ φ

′ ′+ − +

′ ′+ − + − − +

∫

∫ ∫
 

Where ( ) ( )P s P s′ −  if 0s < . Equation (8) is 
derived from 
 

  ( ) ( ) ( )t
d V x x t x t
dt

′= −                                         (10) 

 
Where 
 
 [ ]( ) ( ) , ,0tx r x t r r h+ ∈ −  
 
Remark 2: If there are no time delay terms, the 
result in Theorem 1 becomes a standard 2H  norm 
computation. See, for example, Theorem 3.3.1 in 
[25]: the 2H  norm of a stable non-delay system is 
given by 
 

2

2
( )aG Tr B PB′=                                                  (11) 

 
Where 
 

0 0 0A P PA C C′ ′+ + =  
 
Note that conditions (7) are equivalent to those in 
(11) if 0h = . 
The proof of Theorem 1 will be given using Lemma 
1 and 2. 
 
Lemma 1: If system aG  is stable, then 
 

2

2

1 ( ( ) ( ))
2a a aG Tr G j G j dω ω ω
π

+∞

−∞

′= −∫                   (12) 

 
Proof: The result is standard (see Chap 3.3 in [25]). 
Lemma 2: If aG  is stable and ( ), 0P s s h≤ ≤  
satisfies (8), then 
 

1 11(0) ( ) ( )
2

P j j dω ω ω
π

+∞
− −

−∞

′= ∆ ∆ −∫                        (13) 

 
Where 
 

0 1( ) j hj j I A A e ωω ω −∆ − −                                  (14) 
 
Proof: See [26]. 
(Proof of Theorem 1) From Lemma 1, 
 

{ }

1 1

1 1

( (0) )

1 ( ) ( )
2

1 ( ) ( )
2

Tr B P B

Tr B j j Bd

Tr B j j B d

ω ω ω
π

ω ω ω
π

+∞
− −

−∞

+∞
− −

−∞

′

⎧ ⎫⎪ ⎪′ ′= ∆ ∆ −⎨ ⎬
⎪ ⎪⎩ ⎭

′ ′= ∆ ∆ −

∫

∫
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Since ( ) ( )f j d f j dω ω ω ω
+∞ +∞

−∞ −∞

= −∫ ∫  , we have 

{ }

{ }

1 1

( (0) )

1 ( ) ( )
2

1 ( ) ( )
2 a a

Tr B P B

Tr B j j B d

Tr G j G j d

ω ω ω
π

ω ω ω
π

+∞
− −

−∞

+∞

−∞

′

′ ′= ∆ − ∆

′ ′= −

∫

∫

 

 
Since ( ) ( )Tr AB Tr BA=  whenever AB  and BA  
are square matrices, we have 
 

{ } 2

2

1( (0) ) ( ) ( )
2 a a aTr B P B Tr G j G j d Gω ω ω
π

+∞

−∞

′ ′ ′= − =∫
  
The last equality is from (12). 
If aG  is stable, then 2

2aG  can be computed from 
(0)P   in Theorem 1. How to check the stability of 

aG will be considered later in Theorem 2; first we 
will consider how to compute (0)P  in the next 
lemma. 
 
Notation: For a matrix n nM ×∈  given by 
 

11 12 1

21 22 2

1 2

n

n

n n nn

m m m
m m m

M

m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
M ′  denotes complex conjugate transpose of M  
the column string csM  is defined by 
 

[

] 2

11 12 1 21 22 2

1
1 2

| |

|

n n

n
n n nn

csM m m m m m m

m m m ×′ ∈
 

 
 
How to compute ( ), 0P s s h≤ ≤ , is considered in 
the next lemma. 
 
Lemma 3: If aG  is stable, then (0)P  and ( )P h   
satisfying (8) are given by 
 

0 0 1 1

1 2

( ) ( ) ( ) ( )

(0)
( ) 0

I A A I I A T A I
R R

csP csC C
csP h

⎡ ⎤′ ′ ′ ′⊗ + ⊗ ⊗ + ⊗
⎢ ⎥
⎣ ⎦

′−⎡ ⎤ ⎡ ⎤
⋅ =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

        (15) 

 

Where 
 

2

2
1

1 2: | | | , n
kn

T T T T T R ×⎡ ⎤= ∈⎣ ⎦  
 
Row vector 2,1kT k n≤ ≤  is defined by 
 

2,1kT k n≤ ≤ ( ) ( )
2

1 1: ,1 ,i n j j n iT e i j n− + − += ≤ ≤  

 
Where 

2 1 2,1n
ke R k n×∈ ≤ ≤  is a row vector whose 

k-th element is 1 and all other elements are 0. 
And 
 
[ ] [ ] *

1 2 1 0R R V∑  
 
Matrices 1∑  and *V are from the singular value 
decomposition of the following 
 

( ) 1 *0
exp( )

0 0
I J Hh U V

∑⎡ ⎤
− = ⎢ ⎥

⎣ ⎦
                           (16) 

 
Where U and V  are unitary matrices, and 

2 2

1
n nR ×∑ ∈  is a diagonal matrix whose diagonal 

elements are nonzero singular values of 
( )exp( )I J Hh− . Let ijT  denote an n n×  matrix 
with ( , )i j -entry equal to 1 and all other entries 

equal to zero, and let 
2 2n nT R ×∈  be the block matrix 

T , jiT⎡ ⎤⎣ ⎦  (i.e., the ( , )i j -block of  T is jiT ). 

Matrices H  and J are defined by 
 

0 1

1 0

0( ) ( )
,

0( ) ( )
II A I A T

H J
II A T I A

⎡ ⎤′ ′⊗ ⊗ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥′ ′− ⊗ − ⊗ ⎣ ⎦⎣ ⎦

 

 
Proof: See [22]. 
Note that  (0)P  can be computed from the matrix 
exponential (16) and a simple linear equation (15). 
Thus if aG  is stable, then we can easily compute 

2H  norm: see (7). 
Now the stability of eG  is considered in Theorem 2, 
where a stability condition for interval delay 

)0,h h⎡∈⎣ is provided. 

 
Theorem 2: Suppose aG  is stable for 0h = . If H  
has imaginary eigenvalues { }1, , kj jω ω and 
their corresponding eigenvectors are given by 
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2 2

1,1 ,1

1,2 ,2
1

1,2 ,2

, ,

k

k
k

n k n

ν ν
ν ν

ν ν

ν ν

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
then aG  is stable for )0,h h⎡∈⎣ where h  is defined 

by 
 

2

,

1
,

1min ln i l

i k
i l n

h
j

ν
ω ν≤ ≤

+

⎛ ⎞
⎜ ⎟∈
⎜ ⎟
⎝ ⎠

                                       (17)  

 
where 2

, ,0 1i l nν ≤ ≤  is any nonzero element of 
 

lν . Theorem 2 is proved using Lemma 4 and 5. 
Lemma 4 is based on the fact that if aG  is stable for 

0h =  and aG  does not have any imaginary poles 

for )0,h h⎡∈⎣ , then aG  is stable for )0,h h⎡∈⎣ . 

 
Lemma 4: aG  is stable for )0,h h⎡∈⎣  if  

• aG  is stable for 0h =    
• The following equation does not have any roots for  

)0,h h⎡∈⎣ : 
 

0 1det( ) 0j hj I A A e ωω −− − =                                  (18) 
 
Proof: See [27]. 
Stability of aG  for 0h =  can be easily checked 
from eigenvalues of 0 1A A+ . On the other hand, 

checking whether (18) has any roots for )0,h h⎡∈⎣  

is not easy: (18) should be checked for all 
0 ω≤ < ∞ and 0 h h≤ <  In the next lemma, it is 
shown that a root jω  of (18) (if any) is an 
eigenvalue of H . 
 
Lemma 5: If (18) has a root ω , then it is an 
eigenvalue of H . 
 
Proof: Suppose (18) has a root jω  for h ; then 
there exists ( ) 0nx C∈ ≠ such that 
 

0 1( ) 0j hx j I A A e ωω −′ − − =                                   (19) 
 
Taking the transpose (not complex conjugate), we 
Obtain 

0 1( ) 0j hj I A A e xωω −− − =  

Let nCα∈ be defined by 
 

1

2 2
j h

n

xe
ω

α
α

α

α

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                (20) 

 
where , ,1i i nα ≤ ≤  is a complex number. Let ν  be 
defined by (u  is the complex conjugate of u ) 
 

u
v

u
⎡ ⎤
⎢ ⎥
⎣ ⎦

                                                                (21) 

 
Where 
 

2

1

2 n

n

x
x

u C

x

α
α

α

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                    (22) 

 
The theorem is proved if we show that this ν  ( 0v ≠  
from the construction) satisfies ( ) 0j I Hω ν− = : that 
is, jω  is an eigenvalue of H . From the definition 
of H , we obtain 
 

( )
( )

0 1

1 0

0 1

0 1

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

j I H

j I I A I A T
I A T j I I A

j I I A u I A Tu

j I I A u I A Tu

ω ν

ω
ν

ω

ω

ω

−

⎡ ⎤′ ′− ⊗ − ⊗
= ⎢ ⎥′ ′⊗ + ⊗⎣ ⎦
⎡ ⎤′ ′− ⊗ − ⊗
⎢ ⎥=
⎢ ⎥′ ′+ ⊗ + ⊗⎣ ⎦

        (23) 

 
Partition ( )j I Hω ν−  into 2n  complex vectors and 
let the i-th block of ( )j I Hω ν−  be denoted by 

n
ir C∈ . Then ,1ir i n≤ ≤  is given by 

 
0 1 1 1 2 2( ) ( )i i i i ni nr j I A x A T T T xω α α α α′ ′= − − + + +   

 
Noting the following relation 
 

1 1 2 2

2
1 1 2 2

2

( )

( )

i i ni n

j h

i i ni n

j h

i

T T T x

T T T e

e

ω

ω

α α α

α α α α

α α

−

−

+ + +

= + + +

=
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We obtain 
 

( )
( )

2 2
0 1

2
0 1

0 1

( )

0 , 1

j h j h

i i i

j h
j h

i

j h
i

r j I A e A e

e j I A A e

j I A A e x i n

ω ω

ω
ω

ω

ω α α α α

α ω α

α ω

−

−

−

′ ′= − −

′ ′= − −

′ ′= − − = ≤ ≤

 

 
The last equality is from (19).  
 
Since , 1i n ir r i n+ = − ≤ ≤  (see (23)), we have 

0, 1 2ir n i n= + ≤ ≤ . Hence , ( ) 0j I Hω ν− = , 
where 0ν ≠  (since 0x ≠ ). 
 
Proof of Theorem 2: From the proof of Lemma 5, 
if  (18)  has a root iω  for  (1 )ih i k≤ ≤ , then iω is 
an eigenvalue of H . Furthermore, the 
corresponding eigenvector of H  is of the form: 
 

2 2 2 2
1 2 1

2 2
2

i i i i i i i i

i i i i

j h j h j h j h

i n

Tj h j h

n

v x xe x xe x xe x xe

x xe x xe

ω ω ω ω

ω ω

−

− −

⎡
= ⎢
⎣

⎤
⎥
⎦

 

 
Thus ih  can be computed as follows: 
 

2

,

,

1 ln i l
i

i l n

v
h

j vω
+

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

 
Where 2

, , 1i lv l n≤ ≤  is any nonzero element of iv . 
If the minimum value of (1 )ih i k≤ ≤  is ih then 

(18) does not have a root for )0,h h⎡∈⎣ . From 

Lemma 4, this proves the theorem. 
 
Remark 3: Once ( ),G K  is determined, we can 
check the stability of the error system (4) (Theorem 
2) and compute its 2H  norm (Theorem1). 
 
 
4 Kalman Filter for Time Delay 
Systems: Synthesis  
In this section, the synthesis algorithm of Kalman 
filter (3) is proposed, where the algorithm is 
formulated as a constrained nonlinear optimization 
problem and the output delay *h h= . 

When minimizing 2H  norm of aG  over ( ),G K  
using Theorem 1, it should be guaranteed that aG  is 
stable. The approach presented here allows one to 
design linear observers for time delay systems 
(see Fig.1). If ( ),G K  is given, the stability of aG  
can be checked using Theorem 2, which provides a 
upper stability bound ( )h k  (i.e., aG is stable as long 
as h h< ). Thus finding ( ),G K , which stabilizes aG  
and minimizes

2
( , , )aG G K h . 

Kalman filter design problem can be formulated as 
follows: 
 

2/* *
, 1 2

min ( , , ) ( , , )

( , )

G k aJ G K h G G K h

subject to h h G K<
                  (24) 

 
(24) is a constrained nonlinear optimization problem 
whose global solution is difficult to find. A 
suboptimal approach is proposed to compute 
( ),G K  using  penalty methods [26].  
 
A penalty function is defined by 
 

* 2

0 ( , )
( , )

( ) ( , )
if h h G K

p G K
h h if h h G Kα

⎧ <⎪
⎨

− ≥⎪⎩
 

 
where α  is a constant and is chosen so that 

* *( , , ) ( , , )p G K h J G K h  when * ( , )h h G K . 
With this penalty function, a constrained 
optimization problem (24) can be replaced by the 
following unconstrained optimization problem: 
 

2* *
, 2 2

min ( , , ) ( , , ) ( , )G K aJ G K h G G K h p G K+  (25) 

 
Note that if * ( , )h h G K< (i.e., aG  is stable), then 

* *
2 1( , , ) ( , , )J G K h J G K h= . Also note that if 
* ( , )h h G K≥ ,then *

2 ( , , )J G K h  is dominated by the 
penalty function *( , , )p G K h . Thus the penalty 
function *( , , )p G K h  prevents unstable region 
searching when the 2H  norm is being minimized. 
initial value of G and K can be chosen by 
minimizing ( , ,0)J G K :  the initial value 
corresponds to the Kalman filter gain for a non-
delayed system. Minimization problem (25) can be 
solved, for example, using an unconstrained 
nonlinear optimization function fminunc in 
MATLAB optimization toolbox. 
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Fig. 1: The block diagram of observer 
 
 
5 Numerical Example 
In this section, the simulations have been performed 
by means of the MATLAB software. 
 
Example 1: Consider the following first-order time 
delay system: 
 

( ) ( ) 2 ( ) 0.5 ( ) ( )
( ) ( ) ( ) 0.5 ( )

x t x t x t h t u t
y t x t x t h t

ω
ν

= − − − + +
= + − +

             (26) 

 
where ( )tω  and ( )v t  are the vectors of the input 
noise and measurement noise, respectively. It is 
assumed that these noises are Gaussian processes 
with an average of zero and that ( )tω  and ( )v t  are 
uncorrelated and they satisfy relation (2). In this 
example, 0.5h = .    
The optimization problem (25) is solved by means 
of the Matlab optimization toolbox, and for this 
purpose, the optimization function “fminunc” in 
Matlab is used. 

Fig. 2: Simulation result : true state and estimated value 
 

By using 0h = , the initial value for ( ),G K  is 
obtained. The value of α  in the penalty function has 

been adjusted at 200. The values calculated for 
0.5h =  are as follows: 

2

2
( , ) 0.0717eG K h =  

Using the computed filter gain, state estimation 
simulation was done, where a unit step signal was 
applied to the control input ( )u t at time 1s. The 
simulation result is given in Fig.2 
it can be seen that the proposed Kalman filter 
estimates system states well. 
To see how the time delay affects estimation 
performance, Kalman filters were designed for 
different h values. 
As seen in Table 1, computed 2H  norm increases as 
time delay h  increases. 
 
Table 1. Time delay effects on estimation performance.  
  0.1h = 0.3h =   0.5h = 0.8h =

2

2
( , )eG K h   0.0399 0.0543 0.0717 0.1095 

Variance of actual 

estimation error 

 
0.000015 

 
0.00035 

 
0.00065 

 
0.0009 

 

Example 2: In this problem, the 2H  filter is 
designed for the second-order system given in the 
following relation. 
 

[ ] [ ]

2 1 1 0
( ) ( ) ( )

0 1 1 1

0.2 1
( ) ( )

0.2 1

( ) 0 1 ( ) 1 1 ( ) 0.5 ( )

x t x t x t h

t u t

y t x t x t h t

ω

ν

− −⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= + − +

         (27) 

 
where ( )tω  and ( )v t  are zero-mean, uncorrelated 
white Gaussian processes satisfying (2). The time 
delay is set to be 0.3h = . 
Optimization problem (25) was solved using Matlab 
optimization toolbox. The initial value of ( ),G K  is 
computed using 0h = , and α  in the penalty 
function is set to 100. The computed values are as 
follows: 
 

2

2
1.6309 , ( , ) 0.0240eh G K h= =  

 

Using the computed ( ),G K , state estimation 
simulation was done, where a unit step signal was 
applied to the control input ( )u t at time 1s. The 
simulation results are given in Fig.3 and Fig.4:  it 
can be seen that the proposed Kalman  filter 
estimates system states well. 
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Fig. 3: Simulation result: true state (the first element of 

state x) and estimated value 

Fig. 4: Simulation result: true state (the second element of 

state x) and estimated value 
 
To see how the time delay affects estimation 
performance, Kalman filters were designed for 
different h values. 
As seen in Table 2, computed 2H  norm increases as 
time delay h  increases. Variance of actual 
estimation error, which was computed from a 
simulation, also increases as time delay h  
increases. This verifies a common belief that the 
time delay adversely affects on estimation 
performance. 
 
Table 2. Time delay effects on estimation performance.  
  0.1h =   0.3h =   0.5h =   0.7h =

2

2
( , )eG K h   0.0180 0.0243 0.0321 0.0424 

Variance of actual 

estimation error 

 
0.00088 

 
0.00011 

 
0.00013 

 
0.00015 

 

Example 3: Consider the following third-order 
system with delayed output and state: 
 

(28) 

[ ] [ ]

1 13.5 1 5.9 7.1 70.3
( ) 3 1 2 ( ) 2 1 5 ( )

2 1 4 2 0 6

0.2 1
0.2 ( ) 1 ( )
0.2 1

( ) 0 0 1 ( ) 1 1 1 ( ) 0.5 ( )

x t x t x t h

t u t

y t x t x t h t

ω

ν

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − − + − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= + − +

  
where ( )tω  and ( )v t  are the vectors of the input 
noise and measurement noise, respectively. In this 
example 0.06h = .    
The optimization problem (25) is solved by means 
of the Matlab optimization toolbox, and for this 
purpose, the optimization function “fminsearch” in 
Matlab is used. 
By using 0h = , the initial value for ( ),G K  is 
obtained. The value of α  in the penalty function has 
been adjusted at 50. The values calculated for 

0.06h =  are as follows: 
 

2

2
0.1624 , ( , ) 1.3949eh G K h= =  

 
The simulation results are given in Fig.5, Fig.6 and 
Fig.7:  it can be seen that the proposed 2H  filter 
estimates system states well. 
 

Fig. 5: Simulation result: true state (the first element of 

state x) and estimated value 
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Fig. 6: Simulation result: true state (the second element of 

state x) and estimated value 

 

Fig. 7: Simulation result: true state (the third element of 

state x) and estimated value 
 
As seen in Table 3, computed 2H  norm increases as 
time delay h  increases. 
 
Table 3. Time delay effects on estimation performance.  
  0.01h =   0.03h =   0.06h =   0.1h =

2

2
( , )eG K h   0.9765 1.0962 1.3949 2.0859 

Variance of 

actual 

estimation error 

 
0.000055 

 
0.0001 

 
0.0005 

 
0.0007 

 
As is observed, the increase of time delay has an 
opposite effect on the estimation performance, and 
with the increase of time delay, the estimation error 
variance also increases. 
 

6 Conclusion 
In this article, a method was proposed for the 
designing of Kalman filter for linear systems with 
time delay in the output and in state variables. By 
using the finite characterization of a Lyapunov 
functional equation, the existence of sufficient 
conditions for achieving the right solution and 
guaranteeing the proper convergence rate of the 
estimation error was evaluated. This observer 
provided satisfactory results in practical 
applications. Finally, by designing observers for 
three linear systems with time delays, the 
effectiveness of the proposed approach was 
demonstrated. 
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